Performance Evaluation of Machine Learning Techniques using Software Cost Drivers
نویسنده
چکیده
There is a tremendous rise in cost of software, used in organizations. The cost of software ranges from hundred thousand to millions of dollars. The prediction of the software cost beforehand is the challenging area as the rough estimates and the actual cost varies with large differences. The traditional methods are being used since birth of software engineering. These methods based on current project needs, defines the cost based on appropriate weights assigned to scale factors and cost drivers. Application of artificial intelligence in software project planning has given a new methodology for Software Cost Estimation (SCE) that has improved, prediction accuracy. This methodology named Machine Learning Techniques (MLTs) lays emphasis on, similarity to past projects and correlation in the data (training data).Our research work has considered 10 projects along with their costs based on the cost drivers. Using Machine Learning Techniques (MLTs), the research tries to predict the cost, based on the cost drivers. The performance of MLTs was analyzed using root means square error and squared error.
منابع مشابه
مروری بر روشهای تخمین هزینه نرمافزار مبتنی بر یادگیری ماشین
Software project management software is the most important activity in software development, because it contains the whole software development process, from beginning to end. Software cost estimation is a challenge task in the software project management. It is an old activity in computer industry from 1940s and has been developed many times. Effort, only covers part of the cost of a software ...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملBridging the semantic gap for software effort estimation by hierarchical feature selection techniques
Software project management is one of the significant activates in the software development process. Software Development Effort Estimation (SDEE) is a challenging task in the software project management. SDEE is an old activity in computer industry from 1940s and has been reviewed several times. A SDEE model is appropriate if it provides the accuracy and confidence simultaneously before softwa...
متن کاملA Novel Architecture for Detecting Phishing Webpages using Cost-based Feature Selection
Phishing is one of the luring techniques used to exploit personal information. A phishing webpage detection system (PWDS) extracts features to determine whether it is a phishing webpage or not. Selecting appropriate features improves the performance of PWDS. Performance criteria are detection accuracy and system response time. The major time consumed by PWDS arises from feature extraction that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014